
TOP/DOMDEC - a Software Tool for Mesh Partitioning

and Parallel Processing

Charbel Farhat 1 and Horst D. Simon 2

Report RNR-93-011, June 1993

NAS Systems Division

Applied Research Branch

NASA Ames Research Center, Mail Stop T045-1

Moffett Field, CA 94035

(submitted to 27th Hawaii International Conference on System

Sciences, 1994)

Abstract. TOP/DOMDEC is an interactive software package

for mesh partitioning and parallel processing. It offers several state-

of-the-art graph decomposition algorithms in a user friendly envi-

ronment. Generated mesh partitions can be smoothed and opti-

mized for minimum interface and maximum load balance using one

of several non-deterministic optimization algorithms. TOP/DOMDEC

also provides real-time means for assessing a priori the quality of

amesh partition and discriminating between different partitioning

algorithms. The user interface includes high speed three-dimensional

graphics, an interprocessor communication simulator for today's

massively parallel systems, and an output function with parallel

I/O data structures. In this paper, we describe the basic features

of TOP/DOMDEC and highlight their application to the parallel

solution of computational fluid and solid mechanics problems.

1Department of Aerospace Engineering Sciences and Center for Space Struc-
tures and Controls, University of Colorado at Boulder, Boulder, CO 80309-0429,
USA

2The author is an employee of Computer Sciences Corporation. This work
was supported through NASA Contract NAS 2-12961.

TOP/DOMDEC - a Software Tool for Mesh

Partitioning and Parallel Processing

Charbel Farhat

Department of Aerospace Engineering Sciences

and Center for Space Structures and Controls

University of Colorado at Boulder

Boulder, CO 80309-0429, U. S. A.

e-mail: cha rbeI O boulder, colorado, edu

and

Horst D. Simon

Computer Sciences Corporation

Applied Research Branch

Mail Stop T045-1

NASA Ames Research Center

Moffett Field, CA 94035-1000

e-mail:simonOna_.n_a, gov

TOP/DOMDEC is an interactive software package for mesh partitioning and par-
allel processing. It offers several state-of-the-art graph decomposition algorithms in a

user friendly environment. Generated mesh partitions can be smoothed and optimized
for minimum interface and maximum load balance using one of several non-deterministic

optimization algorithms. TOP/DOMDEC also provides real-time means for assessing

a priori the quality of a mesh partition and discriminating between different partition-

ing algorithms. The user interface includes high speed three-dimensional graphics, an

interprocessor communication simulator for today's massively parallel systems, and an

output function with parallel I/O data structures. In this paper, we describe the basic

features of TOP/DOMDEC and highlight their application to the parallel solution of

computational fluid and solid mechanics problems.

1. The partitioning problem and its significance

Unstructured meshes are used in several large-scale scientific and engineer-

ing problems, including finite-volume methods for computational fluid dynamics

and finite element methods for structural analysis. Because of their large size

and computational requirements these problems are increasingly solved on highly

parallel machinesand clustersof high-endworkstations. If unstructured problems
such as theseare to be solved on distributed-memory parallel computers, their
data structures must be partitioned and distributed acrossprocessors;if they are
to besolved e_cien_ly, the partitioning processmust maximize load balanceand
minimize interprocessor communication. Recent investigations have also shown
that evenwhen computing ona parallel machinethat offersa virtual sharedmem-
ory environment, meshpartitioning is still desirablebecauseit explicitly enforces
data locality and therefore ensureshigh levelsof performance [1].

Given a mesh M and a number of processors Np, one generally would like
_¢AA"s l s= Npto automatically partition M into Np submeshes t--- J,=l such that: (a) the

l s= Npsubproblems associated with {M_jo=I have about the same complexity -- they

are load balanced --, and (b) the amount of communication between the pro-
T htfsls=Npcessors assigned to L--- _,=l is minimized. Some parallel solution algorithms

may also impose other requirements on the mesh partition such as nearly perfect

subdomain aspect ratios or large/small subdomain intercormectivity bandwidth.

Such additional requirements are discussed in [8] but are beyond the scope of this

paper.

The various forms of mesh partitioning algorithms that try to achieve load

balancing and minimum communication are as different as the number of re-

searchers working on the problem. However, recently published mesh decomposi-

tion algorithms can be grouped into three categories: engineering, optimization,

and graph theory based heuristics [2-9]. Deciding which specific algorithm or

category of algorithms is best is as difficult as defining what exactly constitutes

an "efficient" partition. The answers to both questions are mesh, problem, and

machine dependent. The main idea behind designing TOP/DOMDEC is to let

each analyst decide himself which partitioning algorithm is best for his problem.

Therefore, we have integrated in TOP/DOMDEC several popular and state-of-

the-art mesh partitioning algorithms and the simulation tools that are necessary

to evaluate them for different problems and different computing platforms.

2. TOP/DOMDEC

TOP/DOMDEC is a Totally Object-oriented Program written in C++ and

GL for automatic DOMain DEComposition. It is both a software tool and a soft-

ware environment for mesh partitioning and parallel processing. It is a software

tool because it contains several algorithms for automatic mesh decomposition and

a set of relevant decision making tools for selecting the best mesh partition for

a given problem and a given multiprocessor. It is also a software environment

2

becauseit allows advancedusersto "plug in" their own meshpartitioning algo-
rithm and benefit from all the interactive featuresof TOP/DOMDEC that include
the evaluation of load balancing, network traffic and communication costs, the
generation of parallel data structures, and the useof state-of-the-art high-speed
graphics.

3. Partitioning algorithms

The development of efficient heuristics for solving the NP hard problem of

graph partitioning has been a very active research area in the last few years. In

TOP/DOMDEC, we have implemented a number of recent and fast algorithms for

graph and mesh partitioning that have been demonstrated to be useful in practical

large-scale computational science and engineering problems. These algorithms
are:

1. The Greedy algorithm (GR). This partitioning algorithm was first proposed

in [4]. It is referred to as the Greedy algorithm because it essentially "bites"

into the mesh in order to construct the subdomalns. It exploits only the mesh

connectivity information, which makes it is the fastest algorithm implemented

in TOP/DOMDEC. In general, the GR algorithm tends to generate mesh parti-

tions that are characterized by reasonable subdomain aspect ratios and a reduced

number of interface points.

2. The RCM based algorithm (RCM). The use of a bandwidth reduction scheme

such as the Reverse Cuthill-McKee [10] algorithm for mesh partitioning was first

reported in [5] for parallel structural computations on the iPSC/2. The basic idea

is an algebraic one and stems from the fact that if the NEQ x NEQ sparse matrix

associated with the given problem is setup in banded form, and if an equal number

of consecutive columns are assigned to each of the Np available processors, then

the maximum number of processors which need to communicate with any other

processor is given by Np x MAXBAND/NEQ, where MAXBAND denotes the

maximum bandwidth of the system. Therefore if MAXBAND is minimized,

the interconnectivity bandwidth of the subdomalns is also minimized, and the

startup costs associated with the messages issued by any processor are minimized.

However, the I:tCM algorithm tends to produce elongated subdomains with large

interfaces, and hence may not be suitable for parallel processors with relatively

low startup but high transmission costs.

S. The Recursive RCM algorithm (RRCM). This is a recursive version of the

RCM algorithm that strikes a compromise between reducing the bandwidth of

the mesh partition and its interface size. The partitions generated with the RRCM

3

algorithm have always better subdomain aspect rations than thoseproduced by
the RCM scheme.

4. The Principal Intertia algorithm, (PI). Slicing is probably the most intuitive

approaz.h for partitioning any object. In the case of discrete meshes, it can be

implemented as follows [8]. First, a direction u is specified and the mesh points are

projected onto it. Next, the projected points are sorted along u then gathered into

Np subdomains. A reasonable choice for u is given by any of the three principal

inertia directions of the given mesh. These are the eigenvectors/1,/2,/3 of the
3 × 3 inertia matrix:

'I_= l=y I_,

LL= hv x:,
where

i_ Nn

_ = _ (y,- yo,)_+ (., - z.,)_
i=l

i----N,,

i=1

i= N,,

_. = z.. = - _ (x,- xo,)(z,- zo,)

i_ gn

=)2
i----1

i= N.

_.y =xy.= - _ (_,- _o,)(v,- vo,)

6,. = x..,= - _ (v,- vo,)(_ - _o,)
i=1 i=1

and N,, xi, Yi, zi, and x,g, Ycg, Zcg denote respectively the number o.f nodal

points in the mesh, their coordinates, and the coordinates of the mesh center

of gravity. It should be noted that the PI algorithms include the Coordinate

Bisection algorithms as particular cases [7].

5. The Recursive Principal Intertia algorithm8 (RPI). These algorithms are re-

cursive variations of the PI partitioning schemes. They require solving at each

recursive step a 3 x 3 eigenvalue problem in order to find the principal inertia

directions of the current mesh partition.

6. The Recur_ive Graph Bisection algorithm (RGB). Conceptually, the RGB

algorithm is similar to the RPI schemes. However, whereas the RPI algorithms

use a Euclidean metric for sorting the vertices, the RGB scheme uses a graph

metric for that purpose. Therefore, the RGB partitioning algorithm exploits the

mesh connectivity information but the RPI schemes do not.

7. The 1D Topology Frontal algorithm (1DTF). This is the only partitioning

algorithm in TOP/DOMDEC that guarantees that every generated subdomain

4

will haveat most two neighbors. It is basedon the work presentedin [11] and
can be useful for subdomain-basedmultifrontal solution schemes.

8. The Recursive Spectral Bisection algorithm (RSB). This algorithm is at the

same time the least intuitive partitioning scheme and the one that has most at-

tracted the attention of the parallel computing community. It is derived from a

graph bisection strategy based on the computation of the Fiedler vector -- that

is, the second eigenvector of the Laplacian matrix of the graph associated with

the given problem [6]. Thanks to the multigrid strategy and the special version of

the Lanczos algorithm described in [12] for extracting the Fiedler vector, the com-

putational requirements of this partitioning scheme are no longer overwhelming,

even on a simple workstation.

Some of the above algorithms were not designed to minimize the subdomain

interfaces, and as a matter of fact, will always generate a larger number of inter-

face points than other partitioning algorithms. However, this does not disqualify

them from being of practical use. For example, the slicing algorithms (PI) are

the only partitioning algorithms that can enforce a strip-wise decomposition par-

allel to a specific direction, which is often required in the solution of anisotropic

elliptic problems via a domain decomposition based iterative solver.

Once a partitioning scheme is specified in TOP/DOMDEC, the user can

impose either a "gathered" or a "scattered" decomposition mode. In the gathered

mode, the generated partition is represented by a single object and any further

action on that object applies to all of the subdomains. In the scattered mode,

each generated subdomain is represented by a separate object, has its own data

structures, and is a potential target to an independent action. For example, the

scattered mode allows the user to recursively construct a hybrid mesh partition

where a different decomposition algorithm is applied at a different level of the
recursion.

4. Optimization and smoothing

The algorithms mentioned above are recommended for "initial" decomposi-

tions. After an initial mesh partition is generated, TOP/DOMDEC offers three

optimization algorithms for improving it. The list of subdomain related items

that can be optimized includes:

1. interface size.

2. subdomain frontwidth (for frontal or skyline direct solvers).

3. the product of the above two items.

5

4. node-wise load balance.

5. element-wise load balance.

6. edge-wise load balance.

7. a weighted function of interface size and subdomain frontwidth.

8. a weighted function of node-wise and/or element-wise and/or edge-wise load

balance.

9. a weighted function of interface size and node- or element- or edge-wise load

balance.

Items 8 and 9 are particularly useful for heterogeneous problems that combine

node-wise, and/or element-wise, and/or edge-wise computations.

Three optimization algorithms have been implemented in TOP/DOMDEC

in collaboration with the University of Louvain, Belgium. These are: (1) Tabu

Search, (2) Simulated Annealing, and (3) Stochastic Evolution [11]. The opti-

mization process is quite fast because it is limited to the component of the mesh

that neighbors the initial interface. Having three optimization algorithms avail-

able allows the user to switch between them when one of them gets entrapped

in a local ex'tremum. Optimized mesh partitions have usually smooth interfaces

and therefore are suitable for variational domain decomposition methods that

are popular in both computational fluid dynamics [13] and solid mechanics [14]

problems.

5. Real-time evaluators

As we have said earlier, defining what exactly constitutes an efficient par-

tition is both problem and machine dependent. Therefore, only the analyst in-

terested in running a specific application using a well-defined computational al-

gorithm on a particular computing platform should decide which partitioning

algorithm is best suited for his/her problem. For this reason, we have packaged

in TOP/DOMDEC all of the mesh partitioning algorithms described above, to-

gether with simulation tools that allow their evaluation for a specific problem and

a particular parallel architecture. The list of partitioning attributes that can be
evaluated include:

1. Ingerface aize. The total number of nodes or edges on the subdomain interfaces

is today the most popular criterion for assessing a mesh partition. Because of

interprocessor communication cost considerations, it is believed that the mesh

partition that has the smallest interface size is the best one, even though this is

not necessarily always true [8]. For each mesh partition, TOP/DOMDEC outputs

the interface size of every subdomain as well as the maximum subdomain interface

size and the total interface size (without duplication).

12. Memory requirements. On a distributed memory parallel processor, memory

limitations can be imposed either by the maximum memory requirements of a

given subd0main , or by the total memory requirements of all subdomains. Once

a mesh partition has been created, TOP/DOMDEC allows the user to specify

the number of unknowns at a grid point and the mode of computations, and to

inquire about both the local and global memory requirements of the partitioned

problem. For simplicity, TOP/DOMDEC views the world of computations as

either locally explicit or locally implicit. By locally implicit, we refer to a compu-

tational algorithm that does require the factorization of some subdomain matrix,

and by locally explicit, we refer to an algorithm that does not. In locally implicit

mode of computations, a profile/skyline [15] storage is assumed and an RCM

renumbering option is available; both Dirichlet and Neumann interface boundary

conditions can be specified in that case. The reader should note that, even when

the subdomains are element-wise or node-wise balanced, their skylines are not

necessarily balanced, and therefore the memory requirements for locally implicit

computations can vary from one subdomain to another.

3. Load balance. TOP/DOMDEC outputs load balance factors for both locally

explicit and locally implicit modes of subdomain computations. For locally ex-

plicit computations, load balance factors can be requested for element-wise, node-

wise, edge-wise, subdomaln-by-subdomaln and/or interface-by-interface compu-

tations. For locally implicit computations, the load balance factors can be based

either on the subdomaln matrix envelope sizes, or on the subdomain matl"ix max-
imum bandwidths.

_. Communication pattern and network franc. For a given problem, a given

computational algorithm, and a given parallel processor, the communication pat-

tern of a generated mesh partition can be an important factor for accepting it

or rejecting it. For example, if the target parallel processor is sensitive to wire

contention or a good processor mapping is essential for reducing interprocessor

communication costs, one should select a mesh partition where every subdomain

has a reduced number of neighbors. TOP/DOMDEC allows the user to analyze

graphically the communication pattern of a mesh partition and assess its impact
on network traffic.

5. Communication costs. TOP/DOMDEC has built-in communication cost mod-

els for the iPSC-860, the Paragon XP/S, the CM-5, the KSR-1, as well as a generic

message-passing based parallel processor. The analyst can use these models to

compare the relative communication costs of different meshpartitions and their
load balancing.

In summary, the analyst can generateseveralmeshpartitions using different
decomposition algorithms, then use the evaluators described aboveto select the
most appropriate partition for his/her problem.

5. User interface, import functions and structured output

TOP/DOMDEC's user-friendly interface is built around browsers, pop-up

menus, and click-on buttons. It features high performance three-dimensional

graphics, a visual dynamic data base, and a powerful interactive postprocessor

for visualizing scientific and engineering global or domain decomposed numerical

results. FIG. 1-7 highlight some of the components of this interface.

8

,,.,

(3)

q,.
,---i

q-_:
q.,.

. r..-I
4-J

q,)
,.._-

°

I.... !

C,'b

::_:::_i:i_::_iii_ll_r_.i',, :!;I__J_ii_i_::_i_!!_:::_!_::_!_?..;._i_:::_i!_:_i_i_i_::_::_i_:_:::::_!_:_:,........::::-:-:.:,,L,_..._::........ ::_:---.::::..............::;:_.................:.:::.: .-.-:-:_',
• .:_::::::::::_::::::::...... _::.,.::..:.:::.: .::_;_::.::.::.::.:::-..:.:.:: :

............... •.. --- _, _ " . .

I::!!i':i_!ii!i_i!iiiii!i'_ii!!i!i':ii::!i!!':!_!i!_'J!!i_:_!_!!_:i_:!_:!!_::_::_!_!_:_!!!_!!!_!_:_!_:!_i_:_!!_

(te!xl Jad)

lelOl peaqJa^O aZlU_lldO asodLuooaEl

.:.tUlll/lltlI [giI _li I!IlilIIHLt! II II_]ljlt} BUlll_ _OBUUOt t_ UJ _lJ Ui I tl IO /I ' I [" [lit ' t] r II g i iij[u_l_t=j._t_!,_,,_ _u._ _l II' I _ql_"_ _,uH,_ _u uuu '"t " I'_'

:._::_:_::_:::_:_:::i_.....

. _ii I

...................

,t;o_'_,,;_:'_,,_:..............._i_:..'"':::,_............'_'_':',,:'::r,_:'_",_,,_:,_._!::?::?...................,:_":':_:.........'..................:_i!..................'............._..............!.........•..........,...............................i..............':_" ' .I!:'__'...............:C'[................'::::_':..................._..............."_":.."::':;":;_:"::":::_"_':*;i

, .!_

.... ,,..,, , _ ,.. : .::: ::.?. , ,,, :i ::_ i _::::_:_:i:_:_:_-:._::i_:_:_:_:_:_:_i_:_:_`_:_:_...*.._:_!!_!!_!_!_!!_!_!_!_:_!_!: ; _:............-:::!::':::_._:::-_: ==::_!_..'.-_:_i_:;i::.!: = . "_.:_._:_" '_ '_

::ii_:::i:_i::::i::i_ii_;:i::_:::::::iii_::_::_i_!ii:.:::_ _ _i;:_::_i_:_:_.::_::_:::.::_:_:;:::_: _:-

(3) asit_lUaLUal:i

__l_._llll_l_ _u._l_._tl_._._l_ I1_111t1_1__._i!_llllt_ IJl]tl_l_l_ I_1]1 tJIU___I_[_IJIIIII/I_[UI._I]IIJt_[!/U_!_._ i

' ° _ i_

r--

(-,,

, ,...._

r_

q9

o,-._

Lf.
t..

c_

: i¸

©

Or_
e-t

q;

°

rj_

• i _ i ¸ H _ _ i i

....................i I I •1L_

i !:

__i_i',iii!ii,,+iii+!!+i!i!ii!_ i_! !i!!i ili if!?,i_:

_)]*iu[t' alJ.l{.m!_uk_.u.,.Izmlim,mU._mul+tj j Illtl_l _q*_. tljtilUtu++l_l I ' I'jt I I lltllll] j '11_..................H_ll_ll]l_!!]i!]iI)_::

+ I:: , _++++++I

BOI:I_ l BL IS_:'O_;I

6BZ.6L 88L010"£,.6

SPBL9 I?,1_$8_'1_01

oz!s odola^U3 _qB!oH "1o0 "B^V

.............:i ,+..

+.
...... +

_i!+;+

uo._F)a,k:lalqno0 - _._c_

!iiii!iiii ii iiiii!!iiii ii ii !i•

sPJOM_0 _qLunN

:.,.:_:_:i:_:_:i:_:_:':..'_!_iii:_.,..::_,%,.",._::."...":. "':........?" ". _::" :'" : ? ? :;........ _:i:_::"::::"::_........ :"';:' _ .tl, ..i.tJ.!_lj_1111'.!!_=l.!::-u.'!_:-:!#::_:::_:+ii!!iliiiiii++:ii!!iiii_i_i i+__ii!!ii!iii!+iiiI!iI+iii!i++iiiii++iiii+iiiiii!ii;iiii!li

+>..:............+....

8_ 9"_E":_8"$1" HS H"w al:_orw, s i:_;

I_L £'_3B'Sl'BS1_l'U_al3o_u:IS :: ::.::_+
..: : :.::. :..,.

<

89P l'gl_'3 El"SI'8S _'uu al3:)_uls ,+
..:

Tq6!aH "1o0 "xBtat

i:_i:i:iO0i_:i:::::::!__::_:il__::::::_::/::i?_:::_:__::::_i. /'/,,,IB.IC]
_..:. ::::: :::: ...::.: ::.:::...................:i "

::_:_>:_::_._:__:_:_:_..,._.'.._:_:_:_::_:_:_:_:_;_;_;_:;:_:-_:_:_; _._:__ :_:_::_,:;_:_._,_:_:_._:.,':_:_:_?-.:_ _:__:::I
_!!II::ii_i!!!ii::i!_!_iiii_i::i!i::!!i::i::_i!;:ii:/:i::_::ii_:;i!::_iii_!i_ii_::ii!i!!ii!::::i!iiiiii_!::i_::i_:/:!!:;!i::iii_iiiii_!::::ii_::ii_!i!i:;ii_i_i:::iiii!#:i!il_::::i!;.-.:i_::_i:;i__ii:;_::i::i_:!::_::;:.....
!::_:::::!_::+::!: i_::_i!_:i!:_i_::i_::!i:!i:::!i_i!:_!!!!::_::II!!!-:!i:i:::!I:!::_i:_:ili_ii::i_i:::I:!!_::i:i:::i!_i:.!ii:_:?:I!_i :_I_:!::_::'ii!:i_:i:ii:i?:_i::::i!:i_::_:I

_POW'=I'O'O JaquunN

.....................ii:

......:...!.>!...........................

Buu+qmriN P,IOU ++ ' Bu,.,aquJnN "OBIO;
..,

+; ,.,',.u_,:,..+t.,.. ,,.,..,._:.+,+;+_.-.,::,..., ...:._ ...,,_

-:;,:.:::::_:;.:::.:_..;:.......... :_...........................
IHI_ i

...................... __:::_: +- -+++::+::,_:..:..:_.:.. ++_..+.:.:.:.:.:-.__++:::. , , +. ,_,.,.+,.,:...+,.,_._, :..,,.::.,_.-_,....... _----

CC

b-i

t;,,.++ C"I
l,.++

©

_ _i ¸¸

Oo

h::j

b,

[--,i
0

¢::Z,

Cr"

eb

)-i.-i

©
)-I
rJ':,

Explidt

Node E lerr-)ent

_'./laXr, _ Items
-

_1" _'_..__,_7 ,,_:.' ' ": _

Avg,.# I ter-_;.

OF,G

E)iri(:hlet

-..

RC:M

hleLI ITt,:_T:I

Ma;,'. Avg, Cot. Heir:lt-tt Av 9, Avg. Col. l-leiclht
-. :: _:::k:k.:.:_:_:;_:-_i:_;_:_:_"__:..;:..............:.:::::

U........' ";],'._1;,"ii!:i:i..;:F:f:.:: .%?;:_:_> :.......

k&:v. Ei-fv'. Size is,vg. E)T.,,<.:!i:;ize
:L5?;i::i_i_ii:_::7i_i7i7fi_i_i_if_i_::_ii:;7_i_iif;:_iiitt_:i_iii_:_7!if_!i.>:::_:::_,_:::

, :

Lc..,_l [-..4al,,Fac!: <

i-.r;_:__,_:_::!'_,',i_7:7i:,i?:_'i!7;!:fDf,i_,:_[ii:i:>:_:::7::

Load _.,a/<F_:,I
::::.; >!!:<::h.:ii::,;:i:::_:;>:,.......

: .:.: _......:_::::_:::.:.::__::i_::.:._::::::i_:_i_i:._::.._:::::::::::::::::::::::::::::::::::,:_ {:i_:::i_:_:::_;_:i.:_i:i::i::I

_ i __! ¸¸¸i iii__ i _ •

©

o

©

Oq

O
L_

©

i.=_0

=_=,.

©

©

CM5 i
.....................ii

i;:,::::_:..............StrucE Iem.RSB.TS,B E.32.1

_::, StrucE Iem,RSB,TS,B E,32,2
i!
'_',:'i:::::,.:::: StrucEIem,RSB,TS.BE._.3

! :_::.:_::._:':_::::.....StrucEI ern.R SB.TS.B E.32.4

_: SlrucE lem.R SB.TS.B E,32.5

Statlup (mils)

0.073000

03.92£K_

0.146000

0.292000

0.438000

Startup/Mes_age (rnics.)

,,,::iiii'_°'...........".........':............'..................................'::......................."":!_::..........t

Tram_ssion/e bytes - D O F (mics)
:iiii_i!i_y__i_i'_:_:_ii:':_"........_;y'_";_._'::_"_i_.................__':.iii:':_::__'_:_l

Transmission (mils)

0.018400

0 03956O

O022O8O

0.022O8O

0 O4692O

Total (mils)

0.091400

0.331560

0.168080

0.314080

0 484920

Max Comm Cost (mils)

:_::_::'_I__'_........:"':_'_:'_:'i!_'_:_.......... _.........!_"::,i!!II'! '"l"_:':_i:ii'"__:iii_i_l::ii_.._. -,,.:._ ::_:._::_,:_."_ ':

Avg Comm Cost (mils.:) Load Balance Factor

TOP/DOMDEC also features import and output functions. The import

function is useful for reading industrial meshes written in the format of some

major finite difference and finite element commercial software. Also, the user can

import to TOP/DOMDEC mesh partitions that were generated by a different pro-

gram and take advantage of the graphics features and evaluation/simulation tools

available in TOP/DOMDEC. The output command dumps a specified mesh par-

tition into an ASCII or binary file, including the parallel data structures needed

for local computations and for message passing. This command can modify the

subdomain definitions to allow a specified amount of overlapping. The output

data is blocked in a subdomain-by-subdomain fashion and preprocessed for par-
alleI read instructions.

7. Applications

Here we illustrate the use of TOP/DOMDEC for partitioning realistic un-

structured meshes, and highlight the impact of mesh partitions on the parallel

performance of a computational fluid dyn_cs solver.

First, we consider three meshes corresponding to the finite element discretiza-

tion of a High Speed Civil Transport (HSCT) aircraft (FIG. 8), a Stiffened Wing

Panel (SWP) (FIG. 9), and a Turbine Blade (TB) (FIG. 10).

FIG.8. The HSCT mesh

16

FIG.9. The SWP mesh

FIG. 10. The TB mesh

17

_ _ _ ii,,i_

For simplicity, we assume that for all three problems, the user is interested

in the mesh partition with the smallest total interface size, and/or the smallest
subdomain interface size.

The performance results of various mesh partitioning algorithms are sum-

marized in Tables I-3 where NS, TIN, SIN and PCPU denote respectively the

number of subdomains, the total, number of interface nodes, the maximum num-

ber of interface nodes per subdomain, and the CPU time in seconds for generating

the mesh partition on an IRIS/Crimson Silicon Graphics workstation.

Table 1

tISCT mesh - 12644 nodes - 31544 elements

NS 16 32 64

ALG. TIN/SIN; PCPU TIN/SIN; PCPU TIN/SIN; PCPU
GR 1329/291 ; 0.34 s 2088/179 ; 0.42 s 2818/136 ; 0.53 s

lZGB 1420/342 ;2.88 s 2121/241; 4.03 s 3021/164; 5.74 s

lZPI 2106/376 ; 2.28 s 4231/386; 2.91 s 5855/309; 3.74 s

lZlZCM 1359/273 ;2.04 s 2020/235 ;2.65 s 2938/176 ; 3.42 s

RSB 1335/259 ; 15.86 s 1928/171; 20.66 s 2836/148; 30.34 s

128

TIN/SIN ; PCPU

3871/105 ;0.72

4117/118 ; 8.58 s

8159/229; 4.96 s

3982/165; 4.80 s

4025 / 104; 38.69 s

Table 2

SWP mesh- 9486 nodes- 9136 elements

NS

ALG.
16 32 64

TIN/SIN ; PCPU
GI%

I_GB

I%PI

I_RCM

RSB

1075/173 ;0.11 s

1079/194 ;0.51 s

i705/440; 1.45s

1121/231;1.14 s

754/117 ; 6.32 s

128

TIN/SIN ; PCPU

1432/147 ;0.16 s

1602/158 ;0.77 s

2538/296; 1.83 s

1568/160; 1.57 s

1076/113 ; 8.49 s

TIN/SIN ; PCPU

1947/100 ;0.26 s

2262/118 ; 1.09 s

3482/179; 2.35 s

2135/!40 ; 2.20 s

1640/90 ; 11.98 s

TIN/SIN ; PCPU

2579/63 ; 0.42 s

3126/83 ; 1.84 s

4817/134; 3.23 s

2927/85 ; 3.24 s

2448/64;14.05 s

Table 3

TB mesh - 11096 nodes- 7552 elements

TIN/SIN ; PCPU

GR 2382/396 ; 0.14 s 3012/296 (}.17 s

lZGB 2642/573; 0.67 s 3666/400; 0.88 s

lZPI 3213/531; 1.87 s 5009/488; 2.34 s

tZlZCM 2562/563 ; 2.68 s 3483/441; 3.62 s
lZSB 2196/460 ; 7.60 s

NS 16 32 64 128

ALG. TIN/SIN; PCPU TIN/SIN; PCPU TIN/SIN; PCPU

3943/191 0.28 s 5361/149 ; 0.58 s

4820/267; 1.32 s 5969/184; 1.93 s

66i4/348; 3.05 s 7'918/235; 4.12 s

4695/274 ; 4.64 s 5905/163; 6.49 s

3085/294; 9.78 s 4037/199; 12.14 s 5256/143; 14.05 s

18

,, i!__

The above results show that for all three problems, the GR and RSB algorithms

outperform all of the other partitioning algorithms in reducing the interface size. For

the HSCT mesh, the GR compares favorably with the KSB. However for the SWP mesh,
the RSB outperforms the GR. For the TB mesh, the results oscillate with the number

of requested subdomains. Note that In general, the GR algorithm is the cheapest one
and yet delivers good results.

Next, we focus on the winning mesh partitions for the ttSCT and SWP meshes

and optimize them with the Simulated Annealing (SA) algorithm.

Table 4

HSCT mesh - 12644 nodes- 31544 elements

NS 16 32 64 128

ALG. TIN/SIN; PCPU TIN/SIN; PCPU TIN/SIN; PCPU TIN/SIN; PCPU
Gtl, 1329/291 ; 0.34 s 2088/179; 0.42 s

Gtt+SA 1272/282; 12.76 s 1951/159; 21.20 s
2818/136;

2674/131;
0.53 s 3871/105 ; 0.72

33.58 s 3549/87; 55.52 s

Table 5

SWP mesh- 9486 nodes- 9136 elements

NS 16 32

ALG. TIN/SIN; PCPU TIN/SIN; PCPU

RSB 754/117 ; 6.32 s 1076/113 ; 8.49 s

RSB+SA 690/115; 10.66 s 983/103; 16.44 s

64 128

TIN/SIN; PCPU TIN/SIN; PCPU

1640/90;11.98 s 2448/64;14.05 s

1474/80; 24.50 s 2116/63; 31.22 s

The results reported in Tables 4-5 show that optimization did not help a

Iot the mesh partitions of the HSCT problem, but improved by over 15% the

mesh partitions of the SWP mesh, at a reasonable additiona_ cost. The interface

smoothing effect of the optimization phase is highlighted in FIG. 11-12.

19

P_iG.12. SWP mesh _ RSB: 16 subdon_ain_, after optimization

21

'_ _ iii_i i i _i_̧I¸

Finally, we consider the partitioning in 32 subdomains of a large-scale two-

dimensional NACA0012 mesh, for transonic viscous flow computations on the

iPSC-860/32 and the KSR-1/32 systems. The mesh has 262717 vertices, 523914

elements, and 786631 edges. The para_el CFD algorithm blends finite volume

and fimte element formulations and is described in [1]. It involves both edge-wise

and element-wise computations, for the evaluation of the convective and diffusive

fluxes, respectively. Therefore ideally, all mesh partitions should be balanced both

edge-wise and element-wise. The optimization algorithms of TOP/DOMDEC

(Section 4) can be used for that purpose.

22

FIG.!$. NACAO0!O- pa.rti _l view- GR.: 32 subdomains

23

iil ¸

• _ ,i_ _ _ ,_ •

.

FIG.!4. NACA00!o- partird x:ie_ - RGB" 32 subdomain_

o.t

FIG.15. NACA0012- partialvi_._w- RS2:" 82 s_!bdomMns

",5

Table 6 summarizesthe characteristicsof the meshpartitions obtained with
the GR, RGB, and RSB algorithms (FIG. 13-15), and Tables 7-8 report the per-
formance results on the iPSC-860/32 and KSR-1/32 parallel processors.In Table
6, EL_LBF, ED_LBF, and P_COM_TIME denote respectively the element-wise
load balance factor, the edge-wiseload balance factor, and the communication
time predicted by TOP/DOMDEC.

Table6
NACA0012mesh- 262717vertices--523914elements-786631edges
Partitioning in 32subdomains

GR RGB RSB
TIN 6526 7309 6592
SIN 813 734 626
EL_LBF 98.1% 97,0% 99.8%
ED_LBF 98.2% 97.1% 99.9%
PCPU 8.19s 62.91s 325.66s
P_COM_TIME(iPSC-860) 46.8s 61.4s 54.1s
P_COM_TIME(KSR-1) 19.5s 19.9s 20.7s

Table7
NACA0012mesh- 262717vertices- 523914elements- 786631edges
iPSC-860-32 processors

GR RGB RSB
CommunicationTime 47.4s 62.7 s 53.8 s

Solution Time 550.0 s 550.3 s 538.0 s

Table 8

NACA0012 mesh - 262717 vertices - 523914 elements - 786631 edges
KSP_-I- 32 processors

GR RGB RSB

Communication Time 18.9s 18.5s 14.2s

Solution Time 343.7 s 340.1 s 322.5 s

Cleaxly, the communication costs predicted by TOP/DOMDEC for a_l three

mesh partitions and for the iPSC-860 axe in excellent agreement with the mea-

sured communication costs. As expected (from the interface sizes) the RSB par-

tition communicates longer on the iPSC-860 than the GR paxt_tion; however, it

26

produces faster results. The reason is that the edge-wise load balamce factor is

slightly better for the RSB partition than for the GR one, which highlights the

dominating effect of load balance over communication. On the KSR-1 system,

the measured communication costs differ from the predicted ones. We believe

that this is due to cache effects that are not yet modeled in TOP/DOMDEC.

8. Software distribution

TOP/DOMDEC runs on all Silicon Graphics (IRIS) workstations and on

the IBM RS 6000 machine equipped with the GL graphics library. The size

of the executable program is less than 1.5 Mbytes. It can be obtained from

Professor Charbel Farhat at the University of Colorado, Boulder (e-mail" chax-

bel_boLdder.colorado.edu).

Acknowledgments

The authors would like to thank S. Barnard, M. Lesoinne, S. Maurich, R. Paxtch,

B. Stoner, and D. Vanderstraeten, for their contributions to TOP/DOMDEC.

The first author acknowledges partial support by the National Science Founda-

tion under Grant ASC-9217394 and partial support by RNR NAS at NASA Ames

Research Center under Grant NAG 2-827. The second author is an empIoyee of

Computer Sciences Corporation. His work was supported through NASA Con-
tract NAS 2-12961.

R e fe r e n c e s

[1] S. Lanteri and C. Farhat, Viscous flow computations on MPP systems- im-

plementational issues and performance results for unstructured grids, in" R. F.

Sincovec et. aL, ed., Parallel Processing for Scientific Computing, SIAM, (1993)
65-70.

[2] J. Flower, S. Otto and M. Salama, Optima_ mapping of irregular finite ele-

ment domains to parade1 processors, in A. K. Noor, ed., ParMlel Computations

and Their Impact on Mechanics, The American Society of Mechanicai Engineers,

AMD-Vol. 86, (1987) 239-2152.

[:3] B. Nour-Omid, A. Raefsky and G. Lyzenga, Solving finite element equations

on concurrent computers, in A. K. Noor, ed., Parallel Computations and Their

Impact on Mechanics, The American Society of Mechanica.t Engineers, AMD-Vol.

86, (1987) 209-228.

27

[4] C. Farhat, A simple and efficient automatic FEM domain decomposer, Comp.

&: Struct., Vol. 28, No. 5, (1988) 579-602.

[5] J. G. Malone, Automated mesh decomposition and concurrent finite element

analysis for hypercube multiprocessors computers, Comp. Meth. Appl. Mech.

Eng., Vol. 70, No. 1, (1988) 27-58.

[6] A. Pothen, H. Simon and K. P. Liou, Partitioning sparse matrices with eigen-

vectors of graphs," SIAM J. Mat. Anal. Appl., Vol. 11, No. 3, (1990) 430-452.

(1990)

[7] H. D. Simon, Partitioning of unstructured problems for parallel processing,

Comput. Sys. Engrg., Vol. 2, No. 3, (1991) 135-148.

[8] C. Farhat and M. Lesoinne, Automatic partitioning of unstructured meshes

for the parallel solution of problems in computational mechanics, Internat. J.

Numer. Meth. Engrg., Vol. 36, No. 5, (1993)745-764.

[9] S. Hsieh and J. F. Abel, Use of networked workstations for parallel nonlinear

structural dynamic simulations of rotating bladed-disk assemblies, Comp. Syst.

Engrg. (to appear).

[10] W. Chan and A. George, A linear time implementation of the Reverse Cuthill

Mc Kee Algorithm, BIT, Vol. 20, (1980) 8-14.

[11] D. Vanderstraeten, O. Zone, R. Keunings, L. Wolsey, Non-deterministic

heuristics for automatic domain decomposition in direct parallel finite element

calculations, in: R. F. Sincovec et. al., ed., Parallel Processing for Scientific

Computing, SIAM, 929-932 (1993).

[12] S. T. Barnard and H. D. Simon, A fast implementation of recursive spectral

bisection for partitioning unstructured problems, in: R. F. Sincovec e_. al., ed.,

Parallel Processing for Scientific Computing, SIAM, (1993) 711-718.

[13] Q. V. Dihn, R. Glowinski and J. Periaux, Solving elliptic problems by do-

main decomposition methods with applications, in: A. Schoenstadt, ed., Elliptic

Problem Solvers II, Academic Press, (1984).

[14] C. Farhat, A saddle-point principle domain decomposition method for the

solution of solid mechanics problems, in" D. E. Keyes, T. F. Chan, G. A. Meurant,

J. S. Scroggs and R. G. Voigt, ed., Proc. Fifth SIAM Conference on Domain

Decomposition Methods for Partial Differential Equations, SIAM (1991) 271-292.

[15] A. George and J. W. Liu, Computer solution o£ large sparse positive definite

systems, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1981).

28

• • • i_ _,_

